top of page
asglobarinadcha

Physics project on moving coil galvanometer: Sources of error and limitations



Modern galvanometers, of the D'Arsonval/Weston type, are constructed with a small pivoting coil of wire, called a spindle, in the field of a permanent magnet. The coil is attached to a thin pointer that traverses a calibrated scale. A tiny torsion spring pulls the coil and pointer to the zero position.




physics project on moving coil galva



When a direct current (DC) flows through the coil, the coil generates a magnetic field. This field acts against the permanent magnet. The coil twists, pushing against the spring, and moves the pointer. The hand points at a scale indicating the electric current. Careful design of the pole pieces ensures that the magnetic field is uniform so that the angular deflection of the pointer is proportional to the current. A useful meter generally contains a provision for damping the mechanical resonance of the moving coil and pointer, so that the pointer settles quickly to its position without oscillation.


Most modern uses for the galvanometer mechanism are in positioning and control systems. Galvanometer mechanisms are divided into moving magnet and moving coil galvanometers; in addition, they are divided into closed-loop and open-loop - or resonant - types.


Mirror galvanometer systems are used as beam positioning or beam steering elements in laser scanning systems. For example, for material processing with high-power lasers, closed loop mirror galvanometer mechanisms are used with servo control systems. These are typically high power galvanometers and the newest galvanometers designed for beam steering applications can have frequency responses over 10 kHz with appropriate servo technology. Closed-loop mirror galvanometers are also used in similar ways in stereolithography, laser sintering, laser engraving, laser beam welding, laser TVs, laser displays and in imaging applications such as retinal scanning with Optical Coherence Tomography (OCT) and Scanning Laser Ophthalmoscopy (SLO). Almost all of these galvanometers are of the moving magnet type. The closed loop is obtained measuring the position of the rotating axis with an infrared emitter and 2 photodiodes. This feedback is an analog signal.


Moving coil type galvanometer mechanisms (called 'voice coils' by hard disk manufacturers) are used for controlling the head positioning servos in hard disk drives and CD/DVD players, in order to keep mass (and thus access times), as low as possible.


The early moving-magnet form of galvanometer had the disadvantage that it was affected by any magnets or iron masses near it, and its deflection was not linearly proportional to the current. In 1882 Jacques-Arsène d'Arsonval and Marcel Deprez developed a form with a stationary permanent magnet and a moving coil of wire, suspended by fine wires which provided both an electrical connection to the coil and the restoring torque to return to the zero position. An iron tube between the magnet's pole pieces defined a circular gap through which the coil rotated. This gap produced a consistent, radial magnetic field across the coil, giving a linear response throughout the instrument's range. A mirror attached to the coil deflected a beam of light to indicate the coil position. The concentrated magnetic field and delicate suspension made these instruments sensitive; d'Arsonval's initial instrument could detect ten microamperes.[4]


Edward Weston extensively improved the design of the galvanometer. He substituted the fine wire suspension with a pivot and provided restoring torque and electrical connections[further explanation needed] through spiral springs rather than through the traditional wristwatch balance wheel hairspring. He developed a method of stabilizing the magnetic field of the permanent magnet, so the instrument would have consistent accuracy over time. He replaced the light beam and mirror with a knife-edge pointer that could be read directly. A mirror under the pointer, in the same plane as the scale, eliminated parallax observation error. To maintain the field strength, Weston's design used a very narrow circumferential slot through which the coil moved, with a minimal air-gap. This improved linearity of pointer deflection with respect to coil current. Finally, the coil was wound on a light-weight form made of conductive metal, which acted as a damper. By 1888, Edward Weston had patented and brought out a commercial form of this instrument, which became a standard electrical equipment component. It was known as a "portable" instrument because it was affected very little by mounting position or by transporting it from place to place. This design is almost universally used in moving-coil meters today.[citation needed]


A tangent galvanometer consists of a coil of insulated copper wire wound on a circular non-magnetic frame. The frame is mounted vertically on a horizontal base provided with levelling screws. The coil can be rotated on a vertical axis passing through its centre. A compass box is mounted horizontally at the centre of a circular scale. It consists of a tiny, powerful magnetic needle pivoted at the centre of the coil. The magnetic needle is free to rotate in the horizontal plane. The circular scale is divided into four quadrants. Each quadrant is graduated from 0 to 90. A long thin aluminium pointer is attached to the needle at its centre and at right angle to it. To avoid errors due to parallax, a plane mirror is mounted below the compass needle.


The galvanometer is oriented so that the plane of the coil is vertical and aligned along parallel to the horizontal component BH of the Earth's magnetic field (i.e. parallel to the local "magnetic meridian"). When an electric current flows through the galvanometer coil, a second magnetic field B is created. At the center of the coil, where the compass needle is located, the coil's field is perpendicular to the plane of the coil. The magnitude of the coil's field is:


A tangent galvanometer can also be used to measure the magnitude of the horizontal component of the geomagnetic field. When used in this way, a low-voltage power source, such as a battery, is connected in series with a rheostat, the galvanometer, and an ammeter. The galvanometer is first aligned so that the coil is parallel to the geomagnetic field, whose direction is indicated by the compass when there is no current through the coils. The battery is then connected and the rheostat is adjusted until the compass needle deflects 45 degrees from the geomagnetic field, indicating that the magnitude of the magnetic field at the center of the coil is the same as that of the horizontal component of the geomagnetic field. This field strength can be calculated from the current as measured by the ammeter, the number of turns of the coil, and the radius of the coils.


Unlike the tangent galvanometer, the astatic galvanometer does not use the Earth's magnetic field for measurement, so it does not need to be oriented with respect to the Earth's field, making it easier to use. Developed by Leopoldo Nobili in 1825,[13] it consists of two magnetized needles parallel to each other but with the magnetic poles reversed. These needles are suspended by a single silk thread.[14] The lower needle is inside a vertical current sensing coil of wire and is deflected by the magnetic field created by the passing current, as in the tangent galvanometer above. The purpose of the second needle is to cancel the dipole moment of the first needle, so the suspended armature has no net magnetic dipole moment, and thus is not affected by the earth's magnetic field. The needle's rotation is opposed by the torsional elasticity of the suspension thread, which is proportional to the angle.


To achieve higher sensitivity to detect extremely small currents, the mirror galvanometer substitutes a lightweight mirror for the pointer. It consists of horizontal magnets suspended from a fine fiber, inside a vertical coil of wire, with a mirror attached to the magnets. A beam of light reflected from the mirror falls on a graduated scale across the room, acting as a long mass-less pointer. The mirror galvanometer was used as the receiver in the first trans-Atlantic submarine telegraph cables in the 1850s, to detect the extremely faint pulses of current after their thousand-mile journey under the Atlantic. In a device called an oscillograph, the moving beam of light is used, to produce graphs of current versus time, by recording measurements on photographic film. The string galvanometer is a type of mirror galvanometer so sensitive that it was used to make the first electrocardiogram of the electrical activity of the human heart.


A ballistic galvanometer is a type of sensitive galvanometer for measuring the quantity of charge discharged through it. It is an integrator, by virtue of the long time constant of its response, unlike a current-measuring galvanometer. The moving part has a large moment of inertia that gives it an oscillation period long enough to make the integrated measurement. It can be either of the moving coil or moving magnet type; commonly it is a mirror galvanometer.


GalvanometerA galvanometer is a device (instrument) used for detecting feeble electric voltage, currents in a circuit. It has a coil pivoted (or suspended) between concave pole faces of a strong laminated horse shoe magnet. When an electric current passes through the coil it deflects. Its deflection is noted by attaching a pointer to the coil (or by using a lamp and scale arrangement). The deflection is proportional to the current passed.The galvanometer coil has a moderate resistance (about 100 ohms) and the galvanometer itself has a small current carrying capacity (1 mA).


Moving coil (pointer type) Galvanometer (a) Construction: (Refer Section 2.13).(b) Theory: Let,where G = K/NAB and is called galvanometer constant. Knowing G and observing θ,I can be calculated.(c) Figure of merit: If is defined as the current required to produce unit deflection in the galvanometer. It is represented by the symbol k.(d) Current sensitivity: Deflection produced due to flow of unit current in its coil, is called current sensitivity of the galvanometer. It is represented by the symbol SI(e) Voltage sensitivity: Deflection produced due to current produced by unit potential difference between ends of the galvanometer coil, is called voltage sensitivity of the galvanometer. It is represented by the symbol Sv. 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page